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Abstract. Most geophysical models include a number of patara¢hat are not fully determined by theory, aad e ‘tuned’
to improve the model’'s agreement with availabledgfe might attempt to automate this tuning progess objective way
by employing an optimisation algorithm to find thet of parameters that minimises a cost functigivelé from comparing
model outputs with measurements. A number of dlgms are available for solving optimisation probséerm various
programming languages, but interfacing such sofw@a complex geophysical model simulation, pressegrtain challenges.
To tackle this problem, we have developed an optition suite (“Cyclops”) based on the Cylc workfleamgine

(http://cylc.github.io/cylc/ and https://zenodo.dradge/latestdoi/18362P¢hat implements a wide selection of optimisation

algorithms from the NLopt python toolbox (Johns@014). The Cyclops optimisation suite can be usedalibrate any
modelling system that has itself been implemented éseparate) Cylc model suite, provided it inekidomputation and
output of the desired scalar cost function. A graywnumber of institutions are using Cylc to orchagstcomplex distributed
suites of interdependent cycling tasks within thefrerational forecast systems, and in such caspkcation of the
optimisation suite is particularly straightforward.

As a test case, we applied the Cyclops to calitaagiwbal implementation of the Wavewatch 111™ @8). third generation
spectral wave model, forced by ERA-Interim inpeids. This was calibrated over a one-year peri®@d7}, before applying
the calibrated model to a full (1979-2016) wavedeast. The chosen error metric was the spatiabgeeof the root-mean-
square error of hindcast significant wave heighthpared with collocated altimeter records. We déscthe results of a
calibration in which up to 19 parameters were ojsiaa.

1 Introduction

Geophysical models generally include some empigeshmeterisations that are not fully determinegtwysical theory, and
which need calibration. The calibration processdften been somewhat subjective and poorly docuedef\toosen, 2016),
but in a more objective approach has the aim ofimiging some measure of error quantified from corigpas with
measurement (Hourdin et al., 2017). We can tusithid an optimisation problem: namely to find th@imum of an objective
functionf(¥) wherex represents the set of adjustable parameterd,isadcsingle error metric (e.g. the sum of RMSatifhces
between measured and predicted values of a setpditvariables) resulting from a model simulatwith that parameter set.
The most efficient optimisation algorithms requtite derivativeV £ (%) to be available alongsidé). This, however, is rarely
the case for a geophysical modelling system, sarestrict our attention to the field of DiffereatiFree Optimisation (DFO),
in which the objective functiohcan be calculated, but its gradient is not avéglab

Various methods exist, many of which are summaiiiséide review of Rios and Sahinidis (2012). Somgegod at exploring
parameter space to improve the likelihood of figdgtobal rather than merely local minima. Otheespreferred for quickly
moving to the absolute minimum once in its neighthood. The algorithms are encoded in various laggside.g. Fortran,
C, Python, Matlab), and usually require the usesupply a subroutine to compUu(&), that can be called as required by the

optimisation programme.
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This is satisfactory for many problems where thgctive function is readily expressed as an alparjtbut is somewhat less
straightforward to interface an existing geophyisitedel, as well as all the methods needed to pee@nd compare
measurement data with an optimisation code, intais Nevertheless, examples of this approach edaund in hydrological
and climate modelling applications. For examplegrigeet al. (2015) developed a calibration tool{gdR software) to apply
the Shuffled Complex Evolution optimization algbrit to calibrate the Hydrologic Simulation Prograortfan (HSPF)
model. In climate modelling, Severijns and Hazetg@®05) used the downhill simplex method to optienthe parameter
values of the subgrid parameterizations of an apmesc general circulation model. More recentlytt&e al. (2013) applied
a Gauss—Newton line search optimization algorithiclitnate simulations with the Hadley Centre Atrmuee Model version
3 (HadAMB3) forced with observed sea surface tentpezand sea ice, optimising an objective functlerived from reflected
shortwave radiation and outgoing longwave radiatiomparisons. The Tett et al. (2013) method wasemuently applied to
optimize the sea ice component of the global calipladCM3 climate model (Roach et al., 2017).

Such custom applications of one particular optitiosealgorithm to a specific model, however, caguiee significant effort
to switch to alternative optimisation algorithmsto be applied to new models.

Modern coupled climate models, or operational fastsystems for weather and related processesmnpass a diverse set
of software tools, often running on multiple platfes. Ideally, we would like to be able to optimiserformance of the
modelling system (not just a single model code) without major reagunfation of software between the calibration and
operational/production versions of the system.

The Cylc workflow engine is now applied in severpérational centres to manage the scheduling ké taghin such systems.
So it seems natural to consider the possibilitg@feloping a framework within Cylc for the optintisa of the modelling

systems under its control.

2 Methods

In very general terms, a derivative-free optimmatilgorithm will explore parameter space, selectialues of the parameter
vector¥ in some sequence. As eatls selected, it calls the (user-supplied) subneuto evaluate the objective functifgi).

In our case, this would amount to running a coneptebdel simulation with the corresponding paramsgétings, comparing
outputs to measurements, from which a defined enedric is computed to provide the return valué. dthis can involve a
lengthy simulation, needing a run timigse perhaps of order hours or days to reproduce mantiisars of measurements.
A self-contained optimisation program, with an éoifly-coded function-evaluation subroutine, willmr much faster, with a
run time per iteratiofir typically being some small fraction of a secon aill run in many orders of magnitude less time
than a typical geophysical model even if a numteitevationsN of order 1000 are required. This might be the dase
“deliberately difficult” test problems: we might pect that a well-tested geophysical model will comith reasonable defaults
that in many new implementations will produce aitesithin a relatively simple “basin of attractibso that O(10) iterations
may suffice to get very close.

If the optimisation procedure calls for a full mbden to evaluate the objective function, addterations are required for
convergence, the total run time would be

T =~ Ty + N(Tnoaer + Titer) 1
including an overhead, for initial and final tasks.

As Toaa is orders of magnitude larger thénandTie, the geophysical modelling system totally domisaten time, and we
can comfortably afford not to be concerned withuadg the efficiency of the optimisation routineee by a few orders of
magnitude.

So let's consider a simple measure we might inttedo allow us to recover from an interruption paaty through a long

optimisation process. Normally, the optimisatiomewill retain in memory the values of eatlnd its objective function
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f(¥) that has already been evaluated, to use in s®iefcirther points to be evaluated. If we writesbevalues to file each time
the function evaluation is called, we can buildauleokup table to use in case we need to restanprthcess. In that case, we
could have the function evaluation subroutine fesarch the lookup table for a matcttéwithin some acceptable tolerance),
in which case it could return the tabulated er@ug. Only in the case where a tabulated valuensafound would the full
model simulation be required to compute the retiaine off.

Now rather than actually perform that computatitie, function evaluation subroutine could simplytestheX values (for the
nt iteration, say) to file, and terminate the optiatien. We could then run the model in its usual veaytside the optimisation
code, using thos# values as parameters, and add that result toookup table before restarting the whole process fro
scratch. This time, assuming the optimisation algor is deterministic, with no random process iafiging the sequence of
% values, the firsh points would be exactly the same sequence thatelasted previously, and could be quickly handigd
table lookup, and the algorithm would either fihdtta convergence criterion had been satisfiegelect a new poini+1 to
be passed to the model for simulation.

In this scheme, and assuming that we start wittnapty lookup table, the first pass has one itenagfthe optimisation code,
the second has two, etc. So, allowing an additiomathead” for the full process, the total run time to redul termination
condition(s) afteN iterations should be

T' =T+ 3N 1(T, + nTier + Trmoger) 2

=T+ N(T, + Toue) + o2 Tiger @)

As Tode is orders of magnitude larger than the other titfessratio of the two run times is

Tr N+1 Tj
—x ] ——ier
T 2 Tmodel

4)

Given the expected relative magnitudes of the madeloptimisation iteration times, aNdf order 10s or 100s, the increase
in run time through this approach is actually ngiglie.

On the other hand, this scheme has several bengfitst from being simple to code, the optimisatédgorithm, including
the user-defined function evaluation subroutine lsa completely generic, and applied unmodifiedifterent modelling
systems. The only requirements on the modellintesysre that, at the start of each simulatioredtrin the parameter values
requested by the optimisation code and adapt tbeits standard input formats, then at the end efsimulation, computes
and writes to file a single error metric value. Td@imisation code and the model system could themin separate, both
controlled by some form of scripting scheme, foample. This means that having invested considetabkand resources
in developing a complex modelling scheme, no megopnfiguration needs to be made to prepare ibfidimisation in this
manner, and then to re-implement the optimised flindesystem in operational or production mode.

2.1 Cylc

The Cylc workflow engine Hitp://cylc.github.io/cylcy was developed at NIWA to control the EcoConnegérational

forecasting system and related environmental fetet@research systems, and is now used by sesthel institutions for

similar purposes. EcoConnect manages incomingfdatis of real time atmospheric and stream flow datervations, as
well as daily 144-hour global weather forecastsiftbe UK Met Office. These provide inputs for Neeafand regional data-
assimilating numerical weather forecasts runningigrhourly cycles and a daily global wave forecasdtich in turn provide

inputs for regional wave, storm surge and rivewflmodels. EcoConnect also has a multitude of tasgsocess multiple data
streams for both data assimilation and verificatamd to generate products for dissemination.

Cylc orchestrates tasks in complex cycling workBowr “suites”, respecting the interdependencigs/dren them. Rather
than explicitly calling tasks in a defined sequeri@gdc manages a pool of autonomous tasks (prdarebe actual computing

jobs), with defined dependencies on other tasky. tAsk can start (i.e. submit its job to run) wtadlnits dependencies are
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met. These dependencies, which combine to fornpardtency graph for the suite, can be specified 4Bt af statements of
the form

A:status=> B
which denotes that initiation of task B requiresktd to have reach a specified status. The triggeus defaults to successful
completion, but other conditions may be used, ayt of execution, submission to a batch schedobequeue, submission
or execution failure, or user-specified task ottpessages.
Tasks may repeat on date-time cycling sequences r@presenting successive forecast cycles) defiyelSO 8601 date-
time recurrence expressions, with intra-cycle ddpenies (for different operations needed for eash forecast) and inter-
cycle dependencies (e.g. where a forecast islinéhfrom outputs from a previous cycle).
Tasks associated with more than one cycle canonowrently, if the dependencies allow it (i.e. ymn't have to finish one
cycle before starting the next). So, for exampiben restarting after an extended system downtintask that processes
near-real-time data from external sources may le tabinterleaveseveral cycles concurrently to ictea backlog of data,
allowing for an efficient catch-up.
Cylc also supports integer cycling to control waolfs that are not date-time-based (e.g. to applgessing operations to a
set of different data sources, such as from maeltiptording instruments).
A single suite can control all the separate tasks @upled system. Alternatively, separate switgsinteract through tasks
in one suite polling tasks in another suite on Whttey depend. An example of this is seen in tlesqmt implementation of
NIWA'’s EcoConnect forecasting system, in which eatthe forecast models is implemented in its owfcGuite, so that a
regional wave forecast suite, for example, willlploé relevant tasks in the regional weather fosesaite and the global wave
forecast suite to determine when necessary inpotiuped by those tasks are available. Cylc alppats clock and event

triggers to allow triggering of tasks off the reihe clock and external events such as arrivaleo¥ datasets.

2.2 Implementation

We have developed a Cylc suite (“Cyclops”) to perf@ptimisation of a modelling system that haslfitbeen set up as a
separate Cylc suite. In the example we describehehe model suite controls a multi-year wave nhditedcast, including
the preprocessing of necessary model inputs (jatlgi wind fields) and verification data (satellétimeter data), running
the Wavewatch code, postprocessing of model outpats generation of error statistics from companssof predicted and
observed significant wave height fields.

Typically, a model suite will use time-based cyglito run, for example, at successive forecast sydeto break up a long
simulation into a succession of time blocks. Thémigation suite, on the other hand, uses integelirgy to step through
iterations.

There are several tasks controlled by the optinaisatuite. One of these is responsible for run@ingptimisation algorithm
to either identify an optimal parameter vector frdata provide by previous model runs, or identify hext parameter vector
that needs to be evaluated in that process. This@péimisation task within the suite is implemeanhteith python code calling
the NLopt python toolbox (Johnson, 2014).

NLopt includes a selection of optimisation algamith both “local” solvers, which aim to find the nest local minimum to
the starting point as efficiently as possible, &idbal” solvers, which are designed to exploreftiieparameter space, giving
high confidence in finding the optimal solution @ifia possible multitude of local minima. NLoptlimdes algorithms capable
of using derivative information where available,igfhis not the case in our application, and Cycligpeestricted to the
derivative-free algorithms listed in Table 1.

We have assumed that the sequence of parameters/éested by an optimisation algorithm is deteistimm Several of the
algorithms available in NLopt have some inheresttychastic component. It is, however, possible aierthese algorithms

“repeatably stochastic” by enforcing a fixed seedtfie random number generator.

4
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In NLopt, any combination of the following termirat conditions can be set:

1. maximum number of iterations

2. absolute change in the parameter values less thegsaribed minimum

3. relative change in the parameter values less thastribed minimum
5 4. absolute change in the function value less thamescpibed minimum

5. relative change in the function value less thanesgribed minimum

6. function value less than a prescribed minimum

We have implemented python code that uses NLojs ttakeek a minimum of an objective functfathat represents a non-
negative model error metric. As described above,uber-defined function evaluation has been impfgeteas a generic

10 python functiorf(¥) that simply searches a lookup table (storedfilep If X is found in the table it returns the corresponding
f value, otherwise it saves the vecfoto a file and returns a negatif/galue. Any of the termination conditions listecoab
can be set by the user: the last of these can pssitive prescribed minimurvalue as a convergence condition, while a
negativef value signalling that the optimisation algorithaststopped because a new parameter vecieeds to be evaluated
externally by a model simulation.

15 At present a generic namelist format is used gsubditom Cyclops to supply the names and valugmodmeters to the model
suite. This was chosen as convenient for use witlvéatch, which uses this format directly - oth@del suites will need
to include a customised task to process the nanfiédisnto the model’s usual input formats. Namstdican include named
groups of parameters, which may be helpful in ghiscess in cases where these groups need to bedtdifferently (e.g.
affecting different model input files).

20 A “parameter definition” file is used to specify rameter names and their initial values, as useHiwithe model. If a
parameter is to be allowed to be adjusted by thienggation suite, an allowable range is also shkts Thoice will generally
require some experience with the particular modéthin the optimisation suite, these adjustableapaaters will be scaled
linearly to normalised paramete¥shat lie between 0 and 1. Fixed parameters caindbede for convenience, so that their
names and initial values will be written to the mdist file but these are ignored by the optimisasaite.

25 The major tasks carried out by Cyclops on eachtitam are:

0. (firstiteration only):init: write initial normalised parametertg, to file, ...

1. optimise_step run the optimisation code, starting froiand evaluating every in the sequence, until either a
stopping criterion is met (in which case the tashds a “stop_iter” message), or a paramete¥ &teached that is
not in the lookup table so needs evaluating (slgddly a “next_iter” message)

30 2. make_namelist Convert¥ to non-normalised parameters in a namelist file

3. run_model: Create a new copy of the model suite, copy thmeetiat file to it, and run it in non-daemon mode (i
so the task will not complete until the model ssiteits down). A new copy of the suite is made abfiles
created in one iteration do not overwrite thoseatere on other iterations.

4. update_table Read the resulting error value from the modetesaind update the lookup table

35 Within one iteration, the dependencies of the ojsétion suite are simply:

optimise_stepnext_iter =>make_namelist=>run_model => update_table
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to make these tasks run sequentially when no singitton is met. The suite is made to iterate Htirsga dependency on a
previous cycle:
update_tabld-P1] =>optimise_step
(the notation —P1 denotes a negative displacenfemteocycle period), while the stopping conditisrhandled by
optimise_stepstop_iter =>stop_iter
Where thestop_iter task does a final wrap-up of the completed optitiis before the suite shuts down. For the purpobes
good housekeeping, we can also adabalel_deletetask to delete each copy of the model suite olées autputs have been
used.

Figure 1 illustrates the workflow of the optimigatisuite described above in graphical form.

2.3 Parallel iterations

For some DFO algorithms, at least some parts os#tpience of vectors tested is predetermined, ratependent of the
function values found at those points. For exanfp@BYQA (which we chose to use in the test appiocatescribed below)
sets up a quadratic approximation by sampling titéal point, plus a pair of points on either sialeit in each dimension.
With N parameters, the first\&-1 iterations are spent evaluating thebl2 fixed points, regardless of the function values
obtained there. In such situations, the functidoesfor each of these points could be evaluatedlsneously.

This can be done within Cylc by allowing tasks framltiple iteration cycles to run simultaneously.dractice, this means
that multiple copies of the model suite are runrsimgultaneously, to the extent allowed by resowatecation on the host
machine(s). This makes it imperative that a newarfgthe model suite is made for each iteration.

If parallel iterations are allowed, this means tizny time there are a certain set of parametetovs for which the function
values are still being determined (we can call thés“active” set). We can add another parametetoveo that set if it will
be selected by the optimisation algorithm regasdtéghe function values at the active parametetors.

We would clearly like to determine that without degy specific knowledge of how the particular opsiation algorithm
works. Instead we use a simple “empirical” methbalthis end, we maintain a file (the “active filditing the active vectors,
and make an addition to the function evaluatiorreutine, so that if it fails to find in the lookup table, it then searches the
active file and if it finds¢ there, assignisa random positive value (in this application we'tice-initialise the random number
generator with a fixed seed). Otherwise it wrife® file and returns a negatif¢o force the optimisation algorithm to stop as
usual. The python code controlling the optimisatidgorithm has also been modified. Now when thévadtle is empty it
will act as before, but if there are active vectoiisrun a small set of repeated optimisationsllfof these result in the same
choice of ¥ value to be evaluated, a “next_iter” messageris teetrigger further tasks for this iteration ay@s before, since
this choice is independent of the results for tttiva parameter vectors. If not, we do not havefinde X to evaluate, and
we must wait until at least one of the presentlvacsimulations has finished before trying agama “wait_iter” message is
sent. But clearly this does not mean that the dpétion is complete.

This is handled within the Cylc suite by havingesa} versions of the “optimise_step” task. Now fopse_step m” runs
the optimisation algorithm when there anective model simulations still running, withranging from 0 to a set maximum

M. There are a more complex set of dependencieassure that this is the case. In particular, thew ¢ondition

update_tablg-P(m+1)] => optimise_step m
to ensure that the lookup table has been updatédtiae results of all completed (i.e. inactiveyat#ons, while the other
requirements to trigger optimise_stap are expressed as:

optimise_step m+1:wait_iter |optimise_step m-1[-P1]:next_iter =>optimise_step.m
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That is, we can either come to run the preserstitar withm active simulations already running through thevjmes iteration

(with m-1 active simulations) launching thé" active simulation, or through trying to run with1 active simulations giving
a wait condition.

Hence there are now a family of “optimise_stepk&asepresented in Figure 1 by octagonal figuresfvhide the individual

family members, and their dependencies.

3 Application: a global wave hindcast based on ERAnaterim inputs

Here we describe a global wave simulation, usirey \Wavewatch 11I® model, forced by inputs from th&AInterim
Reanalysis, covering the period from January 18Mecember 2016.

Such multi-year wave model simulations are a vdkiaieans of obtaining wave climate informationgtisl and temporal
scales that are not generally available from dineeasurements. It is rare for a particular locatibimterest to have a suitably
long nearbyin situ wave record, e.g. from a wave-recording buoy, rtovide statistically reliable measures of climate
variability on inter-annual time scales. And wrskgellite altimetry has provided near-global resafisignificant wave height
that have been available for more than two decdblese have limited use for many climate applicetifior several reasons,
including a return cycle that is too long to resotypical weather cycles, limitations in providingarshore measurements,
and lack of directional information. Model simudats can in many cases overcome these limitatibns,available
measurements still play an essential role in catiibg and verifying the simulations.

In our case, one of the principal motivations farrging out this hindcast is to investigate therof wave-ice interactions in
the interannual variability of Antarctic sea icdesk, which plays an important role in the globahate system. The ERA-
Interim Reanalysis is a suitable basis for this kvaroviding a consistent long-term record, withredal control on any
extraneous factors (e.g. changing data sourcempdelling methods) that might introduce artifidiednds or biases into the
records. While the ERA-Interim Reanalysis includeoupled wave model, direct use of the wave ostgoes not fully meet
our requirements, which include the need for theemMaindcast to be independent of near-ice satelldee, which were
assimilated into the ERA-Interim Reanalysis. Heweechose to carry out our own wave simulation,ddraith ERA-Interim

wind fields, but with no assimilation of satellitave measurements.

3.1 Comparison of model outputs with altimeter data

Rather than being assimilated in the hindcast/lgataltimetry measurements of significant waveghé were used as an
independent source of model calibration. These vedr@mined from the IFREMER database of multi-missguality-
controlled and buoy-calibrated swath records (Quadu, 2004).

Swath records of significant wave height were fasilocated to the hourly model outputs on the ®°mibdel grid. For each
calendar month simulated, collocations were thesumcilated in 3°x3° blocks of 9 neighbouring cetisproduce error
statistics, including model mean, altimeter medas land root-mean-square error (RMSE), and coelatoefficientR.
Spatial averages of these error statistics werentaiver the full model domain between 65°S and 6&*¢luding polar
regions with insufficient coverage).

The final error statistic used in the objectivedtion was the spatially-averaged RMSE, normalisethb spatially-averaged

altimeter mean, temporally averaged over the sitimrgeriod, excluding spinup.

3.2 Wavewatch parameters

For this simulation we used version 4.18 of the @eatch 1lI® third generation wave model (Tolman12)) The model
represents the sea state by the two-dimensionahowave spectrunf (IZ, X,t) , which gives the energy density of the wave

field as a function of wavenumbkr at each positio in the model grid and timeof the simulation.

7
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The spectrum evolves subject to a radiative traresfaation

4T N) + 2 (kN) + = (6N) =2 (5)

for the wave actionv(k,6,%,t) :F(E,y?, t)/o(k), whereo is the frequency associated with waves of wavermrmb
magnitudek through the linear dispersion relation, ghis the propagation direction. The terms on thieHahd side represent
spatial advection, and the shifts in wavenumbernitade and direction due to refraction by curreamtd varying water depth.
The source tern® on the right hand side represents all other psmEseshat transfer energy to and from wave spectral
components, including contributions from wind foigj energy dissipation and weakly-nonlinear fouveveteractions.
Adjustable parameters within the Wavewatch modsl¢an influence a deep water global simulatiomsisthe one described
here are principally concentrated in the wind inand dissipation source terms. It is generally ssa®y to treat these two
terms together as a ‘package’. In this study weeuiodk two separate calibration exercises, basetion'packages’ of
input/dissipation source terms, firstly that of faln and Chalikov (1996) (activated in Wavewatclii®yST2 switch), and
secondly the Ardhuin et al (2010) formulation (gsthe ST4 switch).

In the Appendix we describe some of the detailthe$e two packages. We also include some deseriptithe WAM Cycle

4 (ST3) input source term formulation (Janssen11,98n which the ST4 input term is based, evendhahe ST3 package
was not tested in this study.

In addition to the input and dissipation terms,dtieer main control on deep-water wave transforomat provided by weakly
nonlinear four-wave interactions (Hasselmann, 19@Xfortunately, acceptable run time requiremerds rhultiyear
simulations over extensive domains still precluding a near-exact computation of these terms, asdhe Webb, Resio,
Tracy method (Webb, 1978;Tracy and Resio, 1982)ishavailable in spectral models including Waveshiaivan Viedder et
al., 2000). Instead we use the much-simplified farfirihe Discrete Interaction Approximation (Hassafm et al., 1985),
treating its proportionality consta@tas a tunable parameter.

Common to both optimisations, sea ice obstructias turned on (FLAGTR=4) with non-default valuestfur critical sea ice
concentrations ., ande.,, between which wave obstruction by ice varies betweero and total blocking: these were set to
0.25 and 0.75, respectively. All other availableapaeters beyond the input and dissipation terms Weft with default
settings, noting that shallow water processes,ennitivated, are not expected to have more thagkgible and localised
influence on model outputs in a global simulatibd @aresolution.

For initial testing, in which two sets (ST2 and $®#optimisation parameters were compared, we asate month (January
1997) spinup to a three month calibration periogbfiaary — April 1997). The selection of the calttima period from the full
extent of the satellite record was arbitrary.

Relevant parameters used in the two calibratioaedisted in Table 2 and Table 3, respectively, Wwhiefer to the parameter
names as defined (more completely than we do heréje Wavewatch user manual (Tolman, 2014), andpasified in
namelist inputs to the model. These tables incthdenitial values of the parameters, the range atech they were allowed
to vary, and the final optimised values. Some fipadameters are also listed for completeness. x@mngle, the input wind
vertical levelz, (ST2)= z, (ST4) = 10 m is a property of the input data setwas left fixed. Others were left fixed after an
initial test confirmed that they had zero influermrethe objective function, leaving 13 adjustatdeameters for ST2 and 17
for ST4.

The selection of which parameters to tune, anddhge over which they are allowed to vary, is &@aavhere some (partly
subjective) judgement is still required, based omes familiarity with the relevant model parametatisns. In this case,
parameter ranges were chosen to be physicallystieakaind to cover the range of parameter choised in previous studies

reported in the literature.
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3.3 Optimisation settings

We elected to use the BOBYQA optimisation algorittfowell, 2009) for this study. Given that we expecWavewatch to
be already reasonably well-tuned for a global satioh such as our test case, we wished to useabdptimisation algorithm
that could reach a solution to a problem with 10va€lables in as few iterations as possible. Ofaigerithms available in
5 NLopt that were included in the intercomparisordgtef Rios and Sahinidis (2012), BOBYQA was foundbe the most
suitable in that respect.
Both optimisations were stopped when either thelabs change in (normalised) parameter values e&sthan 0.02, or the
relative change in the objective function was Ié¢isan 0.02. Following the two comparison simulatiotise ST4
parameterisation was chosen for a final calibrati@mried out over a 12 month period (January —ebéxer 1997) following
10 a one-month spinup (December 1996). For this catiitm, the same settings were initially used, et ability of the
optimisation suite to be restarted with revisecpiog criteria was invoked to extend the optimmatwith both criteria
reduced to a value of 0.0001. This was a somewbétary choice made to observe the evolution efdblution. For practical
applications the choice of stopping criteria shaake into account the sensitivity of the objecfivaction to measurement
error in the data used for the calibration, to dwminecessary ‘over-tuning’ of the model.
15 The full hindcast, from January 1979 through Decen916 was then run using the optimised paransetetComparisons
with altimeter data were made for each month fromgust 1991 onward.
Each Wavewatch simulation was run on 64 processos single core of an IBM Power6 machine. Othecessing tasks
within the suites were run on single processor® rEsulting hindcast simulations required an avegapproximately 25

minutes of wall clock time to complete each mortkimulation.

20 4 Results

The BOBYQA algorithm develops a quadratic modettaf objective function. To do so, the first iteoatievaluates the
objective function at the initial point, then petia each component in turn by a positive increntéen) by an equal negative
increment (leaving all other components at theahitalue). This can be seen for the ST2 optimigain Figure 2, in which
the bottom panel shows the sequence of (normalEm@)meter values tested. With 13 adjustable paeasehis amounts to
25 27 iterations in this preliminary phase. As thigsence of parameter values is fixed, independethieofesulting objective
function values, all of the first 27 iterations &bave been run simultaneously as detailed alibpermitted by the queuing
system. We, however, applied a limit of 7 paratiations in line with anticipated resource linibas.
The 3-month ST2 optimisation only required a furthéerations after this initial phase to readt@pping criterion. The ST2
default parameter settings used as the starting fmi optimisation resulted in an objective fuoctivalue of 0.1901, which
30 was reduced to 0.1495 in the optimisation process.
In the optimal configuration, none of the tunabéegmeters were at either of the limits of their @sgd range, indicating that
convergence to a true minimum (at least locallyj baen reached. Most of the parameters were aglytlsl modified from
their initial values: the largest changes werearameters, (reduced from 0.0003 to 0.00022614) &np¢D.47 to 0.27561),
both influencing the low frequency dissipation term
35 The ST4 3-month optimisation was initialised wilte tdefault settings from the TEST451 case repdmtedrdhuin et al
(2010), for which the objective function returnedsdue of 0.1427. Optimisation only managed to oediis to 0.1422 (Figure
3), indicating that the default ST4 parameter s&t aiready quite closely tuned for our case, have®n selected by Ardhuin
et al (2010) largely from broadly similar studies, global simulations (at 0.5° resolution) congghwith altimeter records.
Three of the parameters ended the optimisatiomatemd of their allowed range, in each case asdhee value at which it
40 was initialised. The T6adjustable parametesy) controls the assumed directional spread of tesigttion spectrum, and the

fact that it remained at its upper limit suggektd the optimisation may be improved by assumiegdilsipation spectrum to
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have a narrower directional distribution than dptited. On the other hand, parametersCE4() and 15 ¢

¥ are associated
with an alternative breaking formulation proposad Rilipot and Ardhuin (2012), who chose valu@&* = 0.185 and
CHEK = 1.5 (and correspondingly, turned off the default sation-based dissipation term by settirf§® = 0) whereas this
term is turned off in the ST4 default, hence boéneninitially set to zero. On the face of it, onigint think that the optimisation
algorithm would have been free to explore solutiaith positive values of these parameters, resyitiran optimal ‘hybrid’
total dissipation term. In fact the way the dissipaalgorithm is coded, this form of the dissipatiterm is not computed at
all in the event that2c¥ = 0.0, which would have been the case when the BOBY@arithm explored sensitivity t6}/¢¥

in the initial stages. This means that our choiténitial values may have spuriously caused the BQR\ algorithm to
underestimate sensitivity @}, and may have missed a distinct second local minirtapproximately corresponding to the
parameter settings of Filipot and Ardhuin (2012)).

In the final 12 month ST4 optimisation, two additad parameters were allowed to vary that were fikethe 3-month
optimisation, bringing the number of adjustableapaeters to 19. These were the critical sea iceerdration parametees ,
ande., between which wave obstruction by ice varies betweero and total blocking: these were set to @ua$ 0.75,
respectively. Otherwise, the initial parametersb(@at) again corresponded to the ST4 defaults, wini¢his case produced
an error metric of 0.1436. At the termination aBériterations (with the more stringent stoppiniecia), this had decreased
to 0.1431.

Most of the resulting optimised parameters werselm the values obtained from the 3-month optitiisgTable 3). An
exception was the ¥adjustable parametet,,,, , scaling the strength of the turbulent contribatto dissipation, which
finished the 3-month optimisation at 0.41298, kA.8 (the lower bound) in the 12 month simulations

For this longer optimisation, we have additionabmputed a measure of the sensitivity of the ohjedtinction,using the
initial phase of the BOBYQA iterations to estim#te change in the (un-normalised) parameter redjuogroduce a 0.1%
change in the objective function. This is listed@slta” in the seventh column of Table 3, and pdes a measure, at least in
relative terms, of the bounds within which eachepaster value has been determined.

The full hindcast, run from 1979 to 2016, couldcoeenpared with satellite data from August 1991 omlvdihe resulting bias
in significant wave height, averaged over the Aud@91 — December 2016 comparison period, is showigure 4. Positive
biases are obtained in latitudes south of 45°Siqodarly south of Australia and in the South AtianThis is also seen in the
vicinity of some island groups (notably French Pelsia, Micronesia, the Maldives, Aleutians, CamitheAzores), which
may be indicative of insufficient sub-grid scalesthction. On the other hand, negative biasesese sear the western sides
of major ocean basins, and in the “swell shadowth® northeast of New Zealand. A similar patterséen in the results
reported by Ardhuin et al (2010) for their TEST4tke (their Figure 9).

Normalised root-mean-square error (i.e. RMSE ativided by the observed mean) from the same cosparagain averaged
over the period August 1991 — December 2016, isveha Figure 5. Note that the objective functiom émr optimisation
used this measure, spatially averaged over ocetarsMaetween 61°S and 61°N. For the majority ofdbean surface, this
lies in the range 0.08 — 0.14, but with higher ealnear some island chains and the western boesdadmcean basins. Again,

similar results were reported by Ardhuin et al (@01

5 Discussion

In their review of methods used to tune Numericaattier Prediction and climate models, Hourdin ef28l17) observe that
with the number and complexity of parameterisatimmsonsider, the task of tuning these parameters far a long time
largely left to “expert judgement”, and that objeetmethods have made a more recent appearancentlias statistical,
engineering, and computing fields. The method aeelpresented here, along with the approachesvefiffes and Hazeleger
(2005), Tett et al. (2013), Roach et al. (2017xdbed in the introduction, perform model tuningathgh the relatively direct

10



Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-185
Manuscript under review for journal Geosci. Model Dev.

Discussion started: 21 September 2017

(© Author(s) 2017. CC BY 4.0 License.

10

15

20

25

30

35

approach of defining and minimising a cost functionr method has the advantage of employing a(@t) that is already
becoming commonly used to control complex workfldassweather forecasting and climate modelling syst, to optimize
the parameters of such a system under its coimralway that is simple to implement, and flexilriehoice of optimisation
algorithm.

We have shown it to be a practical method for ojsiimy 10-20 parameters in a model application @fiGant complexity to
require several hours per simulation in a parpltetessing computing environment. For applicatibas are yet more time-
consuming, it is becoming increasingly common (Breit et al., 2012;Wang et al., 2014;Duan et al1,720o first build a
surrogate model to provide a statistical emulatottie actual model, and then apply an optimisatigorithm to the surrogate
model. Such multi-stage model optimisation framéware presently beyond the scope of our techniyutdt may be worth
considering whether the flexibility of our approaciay also bring benefits within such frameworks: &ample, it may be
worth considering a hybrid approach of using acgate model to quantify the role of the full semuddel parameters and
perform an initial global optimisation, before setiing to a method such as ours for a final refingrosing the original model
directly.

In our study we have restricted our attention te lmeal optimisation algorithm (BOBYQA), but ouitial results suggest the
need in some circumstances to apply a more glob#had. This is not difficult to do, with multipldgorithms, both global
and local, implemented in Cyclops, but just noeistigated in this initial study.

As we have seen, there remains a need for carehetbhoices of which parameters to attempt tawipé, and what bounds
to set on their values. Most optimisation algorishame intended for continuously variable parametard may rely on the
objective function having a continuous dependencéhese parameters. In many cases it is clear wiachmeters fall into
this category, as opposed to discrete valued optiBuat in some cases, model code may make binarigehbased on real
parameters lying within discrete ranges, which rhagak this assumption. Hence the Cyclops optintiasivite is best
employed in conjunction with a good understandifithe role each parameter plays in the model, hadrtterplay between
them.

Conclusions

The Cyclops Cylc-based optimisation suite offefeaible tool for tuning the parameters of any mitidg system that has
been implemented to run under the Cylc workflowiragMinimal customisation of the modelling systesmequired beyond
providing tasks to input and apply model paramesdues in a simple namelist format, and outputvéilee of the scalar error
metric that is to be minimised. This then allowy af16 optimisation algorithms (from the NLopt tbox) to be applied to
the optimisation. This optimisation suite is expgecto be especially applicable to operational faséng systems, where
minimal re-configuration is required between “tugiimnd “operational/production” versions of thedoast suite.

Results of the initial test case we have investigaa global hindcast using a spectral wave mamtektl by ERA-Interim
input fields, illustrate that the method is apptileato a modelling system of moderate complexidthbn terms of the number
of parameters to tune, and the computational ressurequired, at least for the purposes of locaimgation to fine tune a
model that already has a more-or-less well developigial parameter set from previous studies. tigations of systems

that require a more global tuning approach, omawee computationally demanding remain for futurekwvo

Code availability

Cyclops-v1.0 has been published through zenddtpg://doi.org/10.5281/zenodo.83790udnder a Creative Commons
Attribution Share-Alike 4.0 licence.
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Appendix A: Wavewatch source term parameterisations
A.1 Tolman and Chalikov input + dissipation sourceerm package

The input source term is defined as
Sin(k,0) = aBN(k,0) (A1)

5 Wherep is a non-dimensional wind-wave interaction paramewhich has a parameterised dependence on weetsnd
direction, through boundary layer properties infleed by the wave spectrum. These dependenciehanever, fully
determined with no user-adjustable terms, so we tmidetails here.

This input term was, however, adjusted by Tolmai0g) following a global test case to ameliorateeacessive dissipation

of swell in weak or opposing winds, in which cagesan be negative. This is done by applying, whes negative, a swell
10 filtering scaling factor with a constant valie for frequencies below Off (wheref, is the peak frequency), scaling linearly

up to 1 at 0.8, with higher frequencies unmodified.

The same study also led to the introduction of membion for the effects of atmospheric stability wave growth identified

by Kahma and Calkoen (1992) by replacing the wimekslu with an effective wind speed,, with

2
(%2)" = 1+ ¢, tanh(max(0, £,{5T — ST})) + c, tanh (max (0, £, 2{ST - 5T;})) (A2)
u Cy
15 whereST is a bulk stability parameter
ST =19l (A3)
up To

in terms of air, sea and reference temperatfyyef; andT,, respectively, and, the wind speed at reference height 10
m, with g the gravitational acceleration. As air and seéasertemperature fields are available from the HRt&fim dataset,
it was possible to apply this parametrisation,tinegc,, ¢, ¢,, f; andsT, as adjustable dimensionless parameters.

20 The dissipation term consists of a dominant loveifiency constituent, with an empirical frequencyedefence parameterised
by constant$,, by, ¢..in and a high-frequency term, parameterised by cotstg, a,, a,, the details of which we leave for
the Wavewatch manual (Tolman, 2014) and originf@remces therein.

A.2 WAM Cycle 4 source term package
The input source term implemented in WAM CycledJapssen (1982) was based on the wave growth tbéMifes (1957).
25 The starting point is the assumption the wind sgééds a logarithmic profile, so that if the windidi input to the model

are specified at elevatior) , then

U(z,) = % log (z—’l‘) (A4)

whereu, is the friction velocity, defined by the total wirstress = u?, x is von Karman’s constant, amgis a roughness

length modified by wave conditions:

— Zo
30 z = N (A5)
in whicht,, is the magnitude of the wave-supported stresdewhi
Zp=ayt/g (A6)

with @, a tunable dimensionless parameter.

The wave-supported stress can be equated to thefratomentum transfer between wind and waves:
35 7, =[dkdozS,(k0) (A7)

wherec is the wave phase velocity
The WAM Cycle 4 input source term is then given by

2
Sin(k,0) = ;’—;% e?7* (% + z,) [max(cos(8 — 6,), 0)]PnaN(k, ) + Syue (k, 6) (A8)

with
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K

Z= lOg(kzl) + cos(B—Hu)(u—C*+z,z)

(A9)

In these termgp, andp,, are the densities of air and watgy,,, is a dimensionless constagy, is a wave age tuning parameter
andp,, is a parameter controlling the directional dep@wéderelative to the wind directid, .
The inter-dependence of,, andS;,expressed in (A7) and (A8) creates an implicit fioral dependence of, onU and
5 1,/t. In practice, this dependence can be tabulatény tise resolved model spectrum for the low-frequyefk < k,,.,) part
of (A7), above which g =5 diagnostic tail is assumed.

TheS,,, term represents a linear damping of swells, infdhe (Bidlot, 2012):

Soue(k,0) = 25,2 ()" [cos(0 - 6,) - oMk, 6) (A10)
With s; set to 1(0) to turn on(off) the damping.

10 Dissipation is represented in the form
Sus(k, 0) = CuB?6 [51 s, (%)2] N(k,6) (A1)

whereCy, is a dimensionless constant, afjdandé, are weighting parameters. These take valdgs= —1.33, 5, = 0.5
and §, = 0.5 in the ECMWF implementation of WAM as reportedBiglot (2012), but are adjustable within Wavewatch.

Mean wavelength and frequency are defined as

= [ kPN(k,0)dE 1/p

15 k=[] (A12)
and
_ _[[oPN(ke)aR] P
o= [ [ N(k,0)dk ] (A13)
with p = 0.5 andp = 1 being the respective WAM defaults (Bidlot, 2013)ily mean steepness is
@& = Ek? (A14)

20 A.3 Ardhuin (2010) source term package

This package introduces a saturation-based digsiptgrm. In order to accommodate this, the WAM IEyt input source

function is modified by replacing., in (A8) with a frequency-dependent form
()’ =

In whichs, = 1 is a sheltering coefficient, to allow for balangith a saturation-based dissipation term. Alsaret lcan be

[ dk' [ a0 s, (K, 9)| | (A15)

‘U.E - |5u|

25 placed on the roughness length replacing (A6) with

zp = min(ao T/ 9, Zomax) (A16)
The swell dissipation parameterisation of Ardhuiale(2009) is used, consisting of terms
Soutisc(k,0) = =S5 72 [2k /20 [N (k, 0) (AL7)
and

30 Soutcurs (k,0) = =22 [16£, 0%ty 5/ g N (k, 6) (A18)
due to effects of the viscous and turbulent bountlarers respectively. The latter depends on theifscant surface orbital
velocity
Uorps = 2[f dkd® oN (k, 8)]Y/2 (A19)
while v, is air viscosity ands is a tunable coefficient of order 1. The two teans combined in weighted form

35 Sout(k, 0) = 7_Sout,vis (k. 0) + 72.Sout,curn (k, 6) (A20)
with weights
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7. = 0.5(1 + tanh((Re — Re.")/s;)) (A21)
depending on a modified air-sea boundary layer Blelgrnumber

Re = 2Uy 5Hs /Va (A22)
which is taken to have a threshold value dependimsignificant wave height:

Re.' = Re.(4m/H,) ™5 (A23)
The turbulent dissipation term is parameterisedejoend on wind speed and direction:

fe = sifeem + lIss| + s5c08(0 — 6,) ] /uorp (A24)

based on the friction factgj 5, from the Grant and Madsen (1979) theory of odoiflaboundary layer flow over a rough
surface.

The dissipation term is based on the saturatichefvave spectrum, and takes the form

a5k, 0) = 0[5, max(B(K) — B,, 0)7 + (1 = 8,) max(B'(k,6) = By, 0Nk, 0) + Sy (k,6) + Spuro (K, 6)
(A25)

where the dissipation spectrum is integrated oVeniged direction range, i.e.

B'(k,0) = eojff ak3 cosB(6 — 8")N(k, §)d6’ (A26)

and

B(k) = max(B'(k,8),6 € [0,27]) (A27)

The cumulative breaking term, associated with lagae breakers overtaking short waves, is

Sccu(l, 0) = 225N, 0) [T ak’ [7 46’ max{BGF,67) — /B, ,0)° (A28)

Wherer,,, = 0.5 andC,, is a tuning coefficient.

The turbulent dissipation term is

Seury (k, 0) = —2Cpurp0 cOs(6,, — e)k%N(k, 6) (A29)

An alternative breaking formulation (Filipot anddhuin, 2012) based on a bore model uses a dissipatte per unit crest

length of

-1 a1 [
€ck = ;Pwd I:tanh(kh)CgSEK anh(ah) (A30)
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Table 1 Derivative-Free Optimisation algorithms fromthe NLopt toolbox supported in the Cyclops optimiation suite

Global:

DIRECT: Dividing RECTangles (Jones et al., 1993)

DIRECT-L: Dividing RECTangles, locally optimised éB8lonsky and Kelley, 2001)
DIRECT-L-RAND: a slightly randomised variant of DEET-L (Johnson, 2014)
CRS: Controlled Random Search (Hendrix et al., 2001

CRS2: Controlled Random Search (Price, 1983)

CRS2-LM: Controlled Random Search with Local Muat{Kaelo and Ali, 2006)
MLSL: Multi-Level Single-Linkage (Rinnooy Kan and. G. Timmer, 1987)

ISRES: Improved Stochastic Ranking Evolution Sgat@gRunarsson and Yao, 2005)
ESCH: Evolutionary algorithm (da Silva Santos et2010)

Local:

COBYLA: Constrained Optimization BY Linear Approxations (Powell, 1994)
BOBYQA: Bounded Optimization BY Quadratic Approxititm (Powell, 2009)
NEWUOA: Unconstrained Optimization (Powell, 2004)

NEWUOA-BOUND: a bounded variant of NEWUOA (Johnsg014)

PRAXIS: Principal Axis (Brent, 1972)

Nelder-Mead Simplex (Nelder and Mead, 1965)

Sbplx: Nelder-Mead applied on a sequence of sulesp@owan, 1990)
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Table 2. Parameters used to calibrate the simulationsing the source term package of Tolman and Chalik (1996), for February
through April 1997. The first two columns list the parameter as defined in the Wavewatch v4.18 user maal (Tolman, 2014), and
as specified in Wavewatch namelist input (with namist groupings in bold). Lower and upper bounds arespecified for parameters

5 adjusted during calibration, along with their final values, and the corresponding index n of the nornfiaed parameter vector. Other
parameters were fixed at the initial value.

Parameter| Code Initial Lower Upper Final n
variable bound bound
SIN2:
Zy ZWND 10.0
X SWELLF | 0.1 0.0 1.0 0.11449 1
Co STABSH | 1.38 1.0 1.8 1.4009 2
STy STABOF | -0.01 -0.02 -0.001 -0.010247 3
G CNEG -0.01 -0.02 -0.001 -0.010261 4
Cy CPOS 0.01 0.001 0.02 0.0097342 5
—fi FNEG 150.0 100.0 200.0 148.61 6
SDS2:
ag SDSA0 4.8 4.0 6.0 4.8036 7
a, SDSA1 1.7x16 | 1.0x10° | 5.0x16° | 1.7017x1¢ |8
a, SDSA2 2.0 1.0 4.0 2.0094 9
by SDSBO 0.3E-3 -0.01 0.01 0.00022614 10
by SDSB1 0.47 0.2 1.0 0.27561 11
Dmin PHIMIN | 0.003 0.002 0.005 0.0029775 12
SNL1:
C NLPROP | 2.5x10 | 2.4x10° |2.8x10° | 2.49867x1G | 13
MISC:
€co CICEO 0.25
€cn CICEN 0.75
FLAGTR | 4

Table 3. As for Table 2, but for parameters used toaibrate the simulation using the source term packge of Ardhuin et al (2010),
10 for February through April 1997.

Parameter Code variable Initial Lower boundUpper bound Final n
SIN4:
Zy ZWND 10.0
a, ALPHAO 0.0095
Bmax | BETAMAX 1.52 1.0 2.0 1.5201 1
Din SINTHP 2.0
Zg ZALP 0.006
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s. | TAUWSHELTER | 1.0 0.0 15 0.95649 2
sy | SWELLFPAR 1
s, | SWELLF 0.8 05 12 0.80014 3
) SWELLF2 -0.018 | -0.03 -0.01 -0.018205| 4
ss | SWELLF3 0015 | 0.01 0.02 0014771 | b
Re, | SWELLF4 1.0x18 | 0.8x16 1.5x16 0.99707x10 | 6
ss | SWELLF5 12 0.8 16 1.2085 7
ss | SWELLF6 0.0
s, | SWELLF7 2.3x10 | 0.0 4.0x10 2.2554x10 | 8
z, | ZORAT 0.04
Zomax | ZOMAX 0.0
SINBR 0.0
SDS4:
SDSC1 0.0
P WNMEANP 05
FXPM3 4.0
frm | FXFM3 9.9
csat | sbsc2 -2.2x16 | -2.5%10° 0.0 -2.1541x18 | 9
Cee | SDSCUM -0.40344 05 0.0 -0.40186 10
B, | SDSC4 1.0
Courp | SDSCB 0.0 0.0 12 0.41298 11
5, | SDSC6 0.3 0.0 1.0 0.26135 12
B, | SDSBR 0.0009 | 0.0008 0.0010 0.00090472 |13
SDSBR2 0.8
pse | SDSP 2.0
SDSISO 2
CECK | SDSBCK 0.0 0.0 0.2 0.0 4
SDSABK 15
SDSPBK 4.0
SDSBINT 0.3
CHCK | SDSHCK 0.0 0.0 2.0 0.0 15
A, | SDSDTH 80.0
ss | SDSCOS 2.0 0.0 2.0 2.0 16
SDSBRF1 0.5
SDSBRFDF 0
SDSBMO 1.0
SDSBM1 0.0
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SDSBM2 0.0
SDSBM3 0.0
SDSBM4 0.0
WHITECAPWIDTH | 0.3
SNL1:
C NLPROP 2.5x10 | 2.4x107 2.8x10° 2.5108x10 | 17
MISC:
€.o | CICEO 0.25
€cn | CICEN 0.75
FLAGTR 4
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Table 4. As for Table 2, but for parameters used toatibrate the simulation using the source term packge of Ardhuin et al (2010),
for Jan-Dec 1997. The “Delta” value in the seventhatumn is the estimated change in the (un-normalisg@dgarameter required to
produce a 0.1% change in the objective function.

Parameter; Code variable Initial Lower bound Uppemib| Final Delta n
SIN4:
Zy ZWND 10.0
ay ALPHAO 0.0095
Bmax BETAMAX 1.52 1.0 2.0 1.5194 0.02498 1
Din SINTHP 2.0
Zg ZALP 0.006
Su TAUWSHELTER 1.0 0.0 15 0.9339 0.2706 p
So SWELLFPAR 1
S, SWELLF 0.8 0.5 1.2 0.8224 0.0206
S1 SWELLF2 -0.018 -0.03 -0.01 -0.01721 0.00064 4
S3 SWELLF3 0.015 0.01 0.02 0.01526 0.00042
Re. SWELLF4 1.0x10 | 0.8x10 1.5x10 0.9888x10 | 0.2328x10 | 6
Ss SWELLF5 1.2 0.8 1.6 0.9360 0.3974 4
Se SWELLF6 0.0
Sz SWELLF7 2.3x16 | 0.0 4.0x160 2.2433x106 | 0.7911x18 | 8
Zy ZORAT 0.04
Zomax | ZOMAX 0.0
SINBR 0.0
SDS4:
SDSC1 0.0
p WNMEANP 0.5
FXPM3 4.0
fem FXFM3 9.9
csa SDSC2 -2.2x10 | -2.5x10° 0.0 -2.1433x10 | 0.0087x16 | 9
Ceu SDSCUM -0.40344| -0.5 0.0 -0.40194 0.02145 10
By SDSC4 1.0
Crurp SDSC5 0.0 0.0 1.2 0.0 - 1
Sq SDSC6 0.3 0.0 1.0 0.2736 0.0928 2
B, SDSBR 9.0x10 | 8.0x10" 10.0x10* 8.9788x10¢ | 0.0951 x16 | 13
SDSBR2 0.8
psat SDSP 2.0
SDSISO 2
cEeK SDSBCK 0.0 0.0 0.2 0.0 - 1
SDSABK 1.5
SDSPBK 4.0
SDSBINT 0.3
chcx SDSHCK 0.0 0.0 2.0 0.0 - 15
Ag SDSDTH 80.0
Sp SDSCOS 2.0 0.0 2.0 2.0 0.0757 L6
SDSBRF1 0.5
SDSBRFDF 0
SDSBMO 1.0
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SDSBM1 0.0
SDSBM2 0.0
SDSBM3 0.0
SDSBM4 0.0
WHITECAPWIDTH | 0.3
SNLL:
3 NLPROP 2.5x10 | 2.4x10 2.8x10 2.5181x19 | 0.1191x10 | 17
MISC:
€0 | CICEO 0.25 0.15 0.45 0.2413 0.1285 ik
€ecn | CICEN 0.75 0.55 0.85 0.7521 0.2358 19
FLAGTR 4
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Figure 1: Dependency graph for the Cyclops optimigéon suite, showing the first three iteration cycle. Numerals refer to the

iteration number. Ellipses represent individual tasls, while the octagonal boxes represent families tdisks, for the case where

parallel simulations are allowed. Arrows representiependency, in that a task at the head of an arrodepends on the task at the tail
5 of the arrow meeting a specified condition (by defait, this means completing successfully) before dan start.
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Figure 2: Sequence of objective function values () and parameter vector components (bottom) at eadkeration in the three month
(February — April 1997) ST2 calibration. The red dasled line marks the optimal solution found.
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Figure 3: Sequence of objective function values ([ and parameter vector components (bottom) at eadkeration in the three month
(February — April 1997) ST4 calibration. The red dasled line marks the optimal solution found.
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Figure 4: Bias in significant wave height from the mdcast compared with satellite altimeter measuremas, over the period August
1991 — December 2016.
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Figure 5: Normalised root-mean-square error in sigificant wave height from the hindcast compared withsatellite altimeter

measurements, over the period August 1991 — Decemt2916.
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